Experiment No : M8

Experiment Name: Steiner's theorem (parallel axis theorem)

Objective:

1. Determining the moment of inertia of a circular disk for various distances between the axis of rotation and the axis of symmetry.
2. Confirming Steiner's theorem (parallel axis theorem).

Keywords: Rotational motions, moment of inertia, parallel axis theorem, oscillation, period.

Theoretical Background:

The moment of inertia of an arbitrary rigid body whose mass elements Δm_{i} have the distances r_{i} from the axis of rotation A is

$$
I^{A}=\sum_{i} \Delta m_{i} r_{i}^{2}
$$

If the axis of rotation does not pass through the centre of mass (CM) of the body, application of Eq. 8.1 leads to an involved calculation. Often it is easier to calculate the moment of inertia I_{CM} with respect to the axis S, which is parallel to the axis of rotation (A) and passes through the centre of mass of the body.

Figure 8.1: Schematic illustration referring to the derivation of Steiner's theorem (parallel axis theorem)

For deriving the relation between I^{A} and I_{CM}, the plane perpendicular to the axis of rotation where the respective mass element Δm_{i} is located is considered (see Fig. 8.1). In this plane, the vector \boldsymbol{a} points from the axis of rotation to the centre-of-mass axis, the vector r_{i} points from the axis of rotation to the mass element Δm_{i}, and the vector s_{i} points from the centre-of-mass axis to the mass element. Thus

$$
r_{i}=a+s_{i}
$$

and the squares of the distances in Eq. 8.1 are

$$
r_{i}^{2}=\left(a+s_{i}\right)^{2}=a^{2}+2 \cdot a \cdot s_{i}+s_{i}^{2}
$$

Therefore the sum in Eq.8.1 can be split into three terms:

$$
I=\left(\sum_{i} \Delta m_{i}\right) a^{2}+2\left(\sum_{i} \Delta m_{i} s_{i}\right) a+\sum_{i} \Delta m_{i} s_{i}^{2}
$$

In the first summand,

$$
\sum_{i} \Delta m_{i}=M
$$

is the total mass of the body. In the last summand,

$$
\sum_{i} \Delta m_{i} s_{i}^{2}=I_{C M}
$$

is the moment of inertia of the body with respect to the centre-of-mass axis. In the middle summand,

$$
\sum_{i} \Delta m_{i} s_{i}^{2}=0
$$

because the vectors s_{i} start from the axis through the centre of mass.
Thus Steiner's theorem follows from Eq. 8.4:

$$
I^{A}=M a^{2}+I_{C M}
$$

This theorem will be verified in the experiment with a flat circular disk as an example. Its moment of inertia I^{A} with respect to an axis of rotation at a distance a from the axis of symmetry is obtained from the period of oscillation T of a torsion axle to which the circular disk is attached. We have

$$
I^{A}=D\left(\frac{T}{2 \pi}\right)^{2}
$$

where D is restoring torque of the torsion axle.

